首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   5篇
地球物理   19篇
地质学   3篇
海洋学   1篇
自然地理   1篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2009年   5篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  1999年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
21.
Juniperus communities are found on over 50 × 106 ha in arid and semiarid habitats in southwestern North America. The drought tolerant sedge Carex planostachys occurs below the canopy in some of these communities. Cover and biomass of C. planostachys are high below the canopy and low in associated gaps. The purposes of this study were to investigate the temporal and spatial physiologic response of C. planostachys to abiotic changes, and determine it's light response characteristics from four contiguous microsites. Net photosynthesis was highest in spring when temperature was cooler and soil water higher, but low carbon uptake continued during summer drought. In addition, C. planostachys demonstrates a capacity to recover from extreme drought, despite water potential measured below ?9.0 MPa. Based on physiological light response curves and gas-exchange measurements, C. planostachys appears tolerant of shaded and full sun habitats. Light levels below the canopy were reduced compared to the gaps, but light saturation of C. planostachys did not change and net CO2 uptake was only reduced slightly. Carbon uptake was coupled to light levels and not soil moisture. Observed differences in physiological attributes and variation in C. planostachys cover and biomass correspond to the presence or absence of the canopy. Low light compensation points, coupled with reduced respiratory demand, maximize photosynthetic gain in low light microsites. C. planostachys appears to acclimate across a range of light regimes, suggesting photosynthetic plasticity, allowing growth and survival in diverse light microhabitats. C. planostachys, tolerant of drought, appears anisohydric and demonstrates a capacity to acclimate to sun and shaded habitats, which could allow it to occur across a wider range of arid areas.  相似文献   
22.
Over the past decade the typical size of airborne electromagnetic data sets has been growing rapidly, along with an emerging need for highly accurate modelling. One‐dimensional approximate inversions or data transform techniques have previously been employed for very large‐scale studies of quasi‐layered settings but these techniques fail to provide the consistent accuracy needed by many modern applications such as aquifer and geological mapping, uranium exploration, oil sands and integrated modelling. In these cases the use of more time‐consuming 1D forward and inverse modelling provide the only acceptable solution that is also computationally feasible. When target structures are known to be quasi layered and spatially coherent it is beneficial to incorporate this assumption directly into the inversion. This implies inverting multiple soundings at a time in larger constrained problems, which allows for resolving geological layers that are undetectable using simple independent inversions. Ideally, entire surveys should be inverted at a time in huge constrained problems but poor scaling properties of the underlying algorithms typically make this challenging. Here, we document how we optimized an inversion code for very large‐scale constrained airborne electromagnetic problems. Most importantly, we describe how we solve linear systems using an iterative method that scales linearly with the size of the data set in terms of both solution time and memory consumption. We also describe how we parallelized the core region of the code, in order to obtain almost ideal strong parallel scaling on current 4‐socket shared memory computers. We further show how model parameter uncertainty estimates can be efficiently obtained in linear time and we demonstrate the capabilities of the full implementation by inverting a 3327 line km SkyTEM survey overnight. Performance and scaling properties are discussed based on the timings of the field example and we describe the criteria that must be fulfilled in order to adapt our methodology for similar type problems.  相似文献   
23.
24.
Modern airborne transient electromagnetic surveys typically produce datasets of thousands of line kilometres, requiring careful data processing in order to extract as much and as reliable information as possible. When surveys are flown in populated areas, data processing becomes particularly time consuming since the acquired data are contaminated by couplings to man‐made conductors (power lines, fences, pipes, etc.). Coupled soundings must be removed from the dataset prior to inversion, and this is a process that is difficult to automate. The signature of couplings can be both subtle and difficult to describe in mathematical terms, rendering removal of couplings mostly an expensive manual task for an experienced geophysicist. Here, we try to automate the process of removing couplings by means of an artificial neural network. We train an artificial neural network to recognize coupled soundings in manually processed reference data, and we use this network to identify couplings in other data. The approach provides a significant reduction in the time required for data processing since one can directly apply the network to the raw data. We describe the neural network put to use and present the inputs and normalizations required for maximizing its effectiveness. We further demonstrate and assess the training state and performance of the network before finally comparing inversions based on unprocessed data, manually processed data, and artificial neural network automatically processed data. The results show that a well‐trained network can produce high‐quality processing of airborne transient electromagnetic data, which is either ready for inversion or in need of minimal manual processing. We conclude that the use of artificial neural network scan significantly reduce the processing time and its costs by as much as 50%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号